Dinkum Journal of Natural & Scientific Innovations (DJNSI)

Publication History

Submitted: April 27, 2024
Accepted:Β  Β May 22, 2024
Published:Β  February 28, 2025

Identification

D-0347

DOI

https://doi.org/10.71017/djnsi.4.2.d-0347

Citation

Kamal Giri (2025). First Principles Study of Stability of Sodium Hydride (Nah)N Clusters, (N=1-6). Dinkum Journal of Natural & Scientific Innovations, 4(02):92-103.

Copyright

Β© 2025 The Author(s).

First Principles Study of Stability of Sodium Hydride (Nah)N Clusters, (N=1-6)Original Article

Kamal Giri 1*

  1. Lecturer in Physics at Liverpool International College, Kathmandu, Nepal.

*Β Β Β Β Β Β Β Β Β Β Β Β  Correspondence: lovdrazzk@gmail.com

Abstract: This entire work described the structures and electronic properties of sodium hydride clusters (Na H) n (n=1-6), where n is the number of atoms) by the first principles study. In the calculation, ab-initio, Density Functional Theory (DFT) and AIM (Atom in Molecule) theoretical calculation have been used. DFT and ab-initio were performed implementing Gaussian 03W suite of software. For AIM theoretical calculation AIMALL software was used. We have calculated all the physical properties such as interaction energy, corrected zero-point energy, and corrected interaction energy, ground state energy of sodium hydride clusters. The calculated corrected interaction energy of (Na H) n, (n=2-6) clusters, have been found to be in the range (-19.131 to – 22.289) kcal molβˆ’1 for linear structures and the range (-22.620 to -35.779) kcal molβˆ’1 for cyclic structures at DFT (B3LYP) level of theory using 6-311++G** basis set. Sodium hydride cluster found to be more stable in the singlet state than the triplet state. The linear structure of sodium hydride cluster is found to have maximum frequency compared to other structures like cyclic and cubic. Also, we have analyzed different form of stretching and contracting frequencies of sodium hydride clusters. The electron density at bond critical point and Laplacian of (Na H) n (n=1-6) clusters, have been found to be in the range (0.0269 to 0.0327) a. u and (0.1036 to 0.1298) a. u for linear structures and the range (0.0220 to 0.0238) a. u and (0.0803 to 0.0938) a. u cyclic structures, calculated by using AIMALL software. The bond length (Na-H) of (Na H) n (n=1-6) clusters, have been found to be in the range (1.790 to 2.120) ˚A for linear structures at DFT(B3LYP) level of theory using 6-311++G** basis set. Similarly, we have analyzed the cubic and cubic like structure of sodium hydride tetramer and sodium hydride hexamer but no cubic like structures are formed in sodium hydride pentamer.

Keywords: Sodium hydride clusters, Interaction energy, Frequency, BSSE, DFT

  1. INTRODUCTION

Computational physics is the method of studying numerical algorithms and implementing them to solve problems in physics for which a quantitative theory already exists. Historically, it was the first application of modern computers in science and it is now a subset of computational science. It is also considered as the intermediate part between theoretical and experimental physics [1]. Computational physics also uses methods of theoretical chemistry, incorporated into efficient computer programs, to calculate the structures and properties of molecules and solids. It is fairly inexpensive, speedy and environmentally safe compared to the experimental work [2]. Moreover, computation become so reliable in some respects that more and more, scientists in general are employing it before starting on an experimental work and the day may come when to obtain a grant for some kinds of experimental work, we will have to execute to what extent we have computationally explored the practicability of the proposal [3].There are many different types of clusters, such as metallic clusters, molecular clusters , semiconductor clusters, organic clusters, van der Waals clusters and ionic clusters, which all have their own features and properties [4]. Solid cluster is a group of atoms or molecules. When there is transfer of electrons form one atom to other, each atom needs stable configuration similar to the close nascent gas atoms. Such kind of bonding is known as ionic bond. Simply, cation means atoms that loses one or more electrons and anion means atoms that gains one or more electrons [5]. Some examples of ionic crystals are Na H, LiH, NaCl, NaBr, KF, K Cl, Al2O3, etc.Β  Compounds of metals with non-metals tend to be ionic [6]. Compounds of non-metals with non- metals will be covalent. The common example of ionic bonding is the sodium hydride bonding which add the subject of interest in the present work. As we know, sodium and hydrogen be Ing the element of the same s-block, so it is more interesting. Sodium is metallic element heavier than lithium element. It is more reactive than Potassium, Rubidium, Cesium and Francium. Sodium has potential to form multicentered bonds (i. e, β€œhypervalent” clusters with more β€œbonds” than available valence electrons) has been a focus of attention for many years [7]. Sodium hydride is after Ne H. Sodium hydrides are important as models for simple electron-deficient ionic metal compounds [8]. The first-principles calculations have been carried out to study the stability, electronic structures and properties such as ground state energy, dipole moment, interaction energy, electronic distribution etc. of a wide range of solid systems using the Gaussian 98 suit of programs in the last few years and recently using the Gaussian 03W suit of programs [9] in the Central Department of Physics in collaboration with the State University of New York at Albany. With the availability of the Gaussian 98 and the Gaussian 03W suit of programs, the ab-initio calculations have been performed to study the equilibrium configurations for magnesium monohydride and its dimer, beryllium hydride and beryllium monohydride clusters, alkali metal hydrides, lithium hydride and lithium dihydride, sodium hydride etc [10]. also have been carried out in the Central Department of Physics, Kantipur, Nepal. In the present work, we focus mainly on equilibrium configuration, interaction energy, zero-point energy and harmonic vibrational frequency of (Na H) n clusters. In the present study, we target to determine stable structure of sodium hydride clusters [11]. The inconsistency of basis set was eliminated by basis set superposition error (BSSE). We have also determined the nature of bonding in sodium hydride clusters. The QTAIM calculation was done using choice of basis sets and assist of wave function using AIMALL software [12].

  1. MATERIALS AND METHODS

The clusters or solids are systems composed by mutually interacting electrons and nuclei and the dynamics of these particles. In general, it cannot be considered separately. Many properties of the interacting system can be obtained by determining the eigenfunction which is the fundamental problem in many bodies system. The total Hamiltonian [13] of a system of N mutually interacting electrons and M nuclei. Born-Oppenheimer Approximation is the first of the several approximations used to simplify the solution of the Schrodinger equation. It simplifies the general molecular problem by separating nuclear and electronic

  1. RESULT & DISCUSSION

Interaction energy (EI) [27] of all (Na H) n, (n=1-6) clusters are calculated by using formula below,

EI = E [(Na H) n] – E [(Na H) nβˆ’1 – E [Na H]

Where, E [(Na H) n], E [(Na H) nβˆ’1, E [Na H] are optimized energies of present cluster, succeed cluster and Na H cluster respectively. Having more negative interaction energy of the structure to be more stable as compared to other structures.

Similarly, we have calculated corrected zero-point energy EZP by using following formula.

EZP = E’clusterβˆ’ E’componeΒ  Ξ£ntsΒ  Β  Β  Β  Β  Β  Β 

EZP = E [(Na H) n] – n E [Na H]

Where, E [(Na H) n] represent the zero-point vibrational energy of present cluster and E [Na H] is the zero point vibrational energy of (Na H) cluster.

We have used the below formula to calculate the interaction energy with corrected zero-point energy EI+ZP of (Na H) n clusters is,

EI+ZP = EI + EZPΒ Β Β Β Β 

Ξ”E = EI+ZP + EbΒ Β Β Β Β 

Optimized structure of sodium hydride monomer at DFT(B3LYP) level of theory using basis set 6-311++G**.

Figure 01: Optimized structure of sodium hydride monomer at DFT(B3LYP) level of theory using basis set 6-311++G**.

Optimized linear structure of sodium hydride dimer at DFT(B3LYP) level of theory using basis set 6-311++G**.

Figure 02: Optimized linear structure of sodium hydride dimer at DFT(B3LYP) level of theory using basis set 6-311++G**.

Table 01: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP, basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of linear structure of sodium hydride dimer at HF, DFT(B3LYP) and MP2 levels of theory using basis sets 6- 31+G, 6-31G*, 6-311+G and 6-311++G** has shown below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00164 -203798 1.259 -22.590 -21.331 -21.329
B3LYP 0.00093 -204398 1.405 -20.080 -18.675 -18.673
MP2 0.00200 -203814 1.379 -21.960 -20.581 -20.578
 

6-31Gβˆ—

HF 0.00169 -203799 1.335 -21.335 -20.000 -19.998
B3LYP 0.00108 -204399 1.288 -19.452 -18.164 -18.162
MP2 0.00254 -203818 1.226 -21.962 -20.736 -20.733
 

6-311+G

HF 0.00072 -203805 1.507 -21.962 -20.455 -20.454
B3LYP 0.00069 -203937 1.347 -25.727 -24.380 -24.379
MP2 0.00109 -203821 1.421 -20.700 -19.279 -19.277
 

6-311++Gβˆ—βˆ—

HF 0.00064 -203807 1.443 -22.590 -21.147 -21.146
B3LYP 0.00088 -204409 1.574 -20.706 -19.132 -19.131
MP2 0.00143 -203835 1.265 -21.335 -20.070 -20.068

 

Table 02: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of cyclic structure of sodium hydride dimer at HF, DFT(B3LYP) and MP2 levels of theory using 6-31+G, 6-31G*, 6-311+G and 6-311++G** basis sets has tabulated below

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00146 -203813 2.381 -37.650 -35.269 -35.267
B3LYP 0.001093 -204413 2.359 -43.512 -41.153 -41.510
MP2 0.00325 -203828 2.339 -36.395 -34.056 -34.052
 

6-31Gβˆ—

HF 0.00141 -203816 2.345 -38.905 -36.560 -36.558
B3LYP 0.00111 -204414 2.341 -35.140 -32.799 -32.797
MP2 0.00475 -203835 2.154 -38.905 -36.751 -36.746
 

6-311+G

HF 0.00047 -203820 2.327 -37.022 -34.695 -34.694
B3LYP 0.00699 -204422 2.266 -43.925 -41.659 -41.652
MP2 0.00262 -203830 2.264 -28.865 -26.601 -26.598
 

6-311++Gβˆ—βˆ—

HF 0.00034 -203823 2.335 -38.905 -36.570 -36.569
B3LYP 0.00088 -204424 2.339 -35.140 -32 -32.800
MP2 0.00060 -203843 2.404 -29.492 -27.088 -27.084

Cyclic structure of sodium hydride dimer with bond critical point at DFT(B3LYP) level of theory using basis set 6-311++G**.

Figure 03: Cyclic structure of sodium hydride dimer with bond critical point at DFT(B3LYP) level of theory using basis set 6-311++G**.

Optimized linear structure of sodium hydride trimer at DFT(B3LYP) level of theory using basis set 6-311++G**.

Figure 04: Optimized linear structure of sodium hydride trimer at DFT(B3LYP) level of theory using basis set 6-311++G**.

 

Table 03: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of linear structure of sodium hydride trimer at HF, DFT(B3LYP) and MP2 levels of theory using 6-31+G, 6-31G*, 6-311+G and 6-311++G** basis sets has shown below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00152 -305715 3.121 -29.492 -26.371 -26.369
B3LYP 0.00087 -306613 2.960 -26.355 -23.395 -23.394
MP2 0.00208 -305737 2.960 -27.610 -24.650 -24.647
 

6-31Gβˆ—

HF 0.00148 -305717 2.833 -49.572 -46.739 -46.737
B3LYP 0.00094 -306614 2.693 -25.727 -23.034 -23.031
MP2 0.00257 -305744 2.452 -27.484 -25.032 -25.029
 

6-311+G

HF 0.00064 -305726 3.150 -28.865 -25.715 -25.714
B3LYP 0.00064 -306627 2.866 -38.579 -35.724 -35.723
MP2 0.00117 -305749 2.880 -27.610 -24.730 -24.728
 

6-311++Gβˆ—βˆ—

HF 0.00056 -305727 3.119 -28.237 -25.118 -25.117
B3LYP 0.00087 -306629 3.437 -25.727 -22.290 -22.289
MP2 0.00163 -305769 2.427 -28.237 -25.710 -25.708

Table 04: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of cyclic structure of sodium hydride trimer at HF, DFT(B3LYP) and MP2 levels of theory using 6-31+G, 6-31G*, 6-311+G and 6-311++G** basis sets has shown below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00267 -305744 4.505 -43.297 -38.792 -38.789
B3LYP 0.00179 -306642 4.444 -40.787 -36.343 -36.341
MP2 0.00471 -305767 4.465 -36.395 -31.930 -31.925
 

6-31Gβˆ—

HF 0.00259 -305747 4.401 -42.670 -38.269 -38.266
B3LYP 0.00176 -306644 4.348 -40.160 -35.812 -35.810
MP2 0.00627 -305775 4.474 -42.670 -38.196 -38.189
 

6-311+G

HF 0.00092 -305754 4.475 -42.670 -38.195 -38.194
B3LYP 0.00104 -306656 4.347 -33.132 -28.785 -28.783
MP2 0.00322 -305778 4.443 -43.297 -38.854 -38.850
 

6-311++Gβˆ—βˆ—

HF 0.00062 -305758 4.397 -42.042 -37.645 -37.644
B3LYP 0.00082 -306659 4.380 -40.160 -35.780 -35.779
MP2 0.00396 -305801 4.487 -52.082 -47.595 -47.591

Table 05: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of linear structure of sodium hydride tetramer at HF, DFT(B3LYP) and MP2 levels of theory using 6-31+G, 6- 31G*, 6-311+G and 6-311++G** basis sets has tabulated below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00307 -407634 4.693 -30.747 -26.054 -26.050
B3LYP 0.00175 -408831 4.472 -28.237 -23.765 -23.763
MP2 0.00417 -407664 4.423 -30.120 -25.697 -25.692
 

6-31Gβˆ—

HF 0.00317 -407636 4.426 -32.002 -27.576 -27.572
B3LYP 0.00199 -408832 4.101 -28.237 -24.136 -24.134
MP2 0.00522 -407672 3.728 -30.120 -26.392 -26.386
 

6-311+G

HF 0.00125 -407647 4.767 -30.120 -25.353 -25.351
B3LYP 0.00135 -408832 4.468 -33.320 -28.852 -28.850
MP2 0.00225 -407672 4.395 -28.865 -24.470 -24.847
 

6-311++Gβˆ—βˆ—

HF 0.00105 -407650 4.811 -32.002 -27.191 -27.189
B3LYP 0.00148 -408851 5.334 -27.610 -22.276 -22.274
MP2 0.00374 -407744 6.032 -68.397 -62.365 -62.361

 

Table 06: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of cyclic structure of sodium hydride tetramer at HF, DFT(B3LYP) and MP2 levels of theory using 6-31+G, 6- 31G*, 6-311+G, 6-311++G** basis sets has tabulated below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00264 -407670 6.128 -37.650 -31.522 -31.519
B3LYP 0.00175 -408866 6.132 -35.140 -29.008 -29.006
MP2 0.00452 -407699 6.061 -33.885 -27.824 -27.819
 

6-31Gβˆ—

HF 0.00271 -407672 5.939 -39.532 -33.593 -33.590
B3LYP 0.00184 -408868 5.952 -34.512 -28.560 -28.558
MP2 0.00621 -407710 6.012 -37.022 -31.010 -31.003
 

6-311+G

HF 0.00087 -407683 6.126 -37.022 -30.896 -30.895
B3LYP 0.00092 -408885 5.995 -32.630 -26.635 -26.634
MP2 0.00290 -439089 6.010 -56.475 -50.465 -50.462
 

6-311++Gβˆ—βˆ—

HF 0.00057 -407687 5.946 -37.022 -31.076 -31.075
B3LYP 0.00082 -408888 6.027 -33.885 -27.858 -27.857
MP2 0.00374 -407744 6.033 -36.395 -30.362 -30.358

Table 07: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP, basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of cubic structure of sodium hydride tetramer at HF, DFT(B3LYP) and MP2 levels of theory using 6-31+G, 6- 31G*, 6-311+G and 6-311++G** basis sets has tabulated below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00238 -407667 7.199 -34.512 -27.313 -27.310
B3LYP 0.00213 -408865 7.171 -33.885 -26.714 -26.711
MP2 0.00635 -407671 7.275 -39.595 -22.320 -22.313
 

6-31Gβˆ—

HF 0.00220 -408868 6.972 -35.767 -28.795 -28.792
B3LYP 0.00196 -408868 7.046 -34.512 -27.466 -27.464
MP2 0.00803 -407712 7.390 -38.905 -31.515 -31.506
 

6-311+G

HF 0.00151 -407680 7.989 -34.512 -27.523 -27.521
B3LYP 0.00195 -408884 6.902 -32.504 -25.602 -25.600
MP2 0.00579 -407858 6.121 -35.767 -28.646 -28.600
 

6-311++Gβˆ—βˆ—

HF 0.00095 -407687 6.984 -37.022 -30.038 -30.037
B3LYP 0.00197 -408889 7.011 -28.129 -21.118 -21.110
MP2 0.00578 -407748 7.325 -40.160 -32.810 -32.804

Table 08: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of linear structure of sodium hydride pentamer at HF, DFT(B3LYP) and MP2 levels of theory using 6-31+G, 6-31G*, 6-311+G and 6-311++G** basis sets has shown below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00144 -509554 6.166 -32.002 -25.836 -25.834
B3LYP 0.00084 -511049 5.926 -29.492 -23.566 -23.565
MP2 0.00210 -509591 5.846 -31.375 -25.529 -25.526
 

6-31Gβˆ—

HF 0.00141 -509556 5.663 -31.375 -25.712 -25.710
B3LYP 0.00090 -511051 5.518 -29.492 -23.974 -23.973
MP2 0.00266 -509601 5.051 -31.375 -26.324 -26.321
 

6-311+G

HF 0.00065 -509570 6.273 -31.375 -25.102 -25.101
B3LYP 0.00070 -511072 5.533 -32.002 -26.469 -26.468
MP2 0.00124 -509610 7.743 -30.747 -25.004 -25.002
 

6-311++Gβˆ—βˆ—

HF 0.00052 -509573 6.396 -31.375 -24.979 -24.978
B3LYP 0.00082 -511075 7.220 -28.865 -21.645 -21,644
MP2 UTO UTO UTO UTO UTO UTO

Table 09: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of cyclic structure of sodium hydride pentamer at HF, DFT(B3LYP) and MP2 level of theory using basis sets 6-31+G, 6-31G*, 6-311+G and 6-311++G** has shown below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(Kcal molβˆ’1 )

 

6-31+G

HF 0.00296 -509593 7.621 -35.767 -28.146 -28.143
B3LYP 0.00189 -511089 7.570 -33.885 -26.315 -26.133
MP2 0.00482 -509630 7.544 -35.140 -27.596 -27.591
 

6-31Gβˆ—

HF 0.00301 -509596 7.348 -35.140 -27.792 -27.788
B3LYP 0.00187 -511089 7.288 -31.375 -24.087 -24.085
MP2 0.00644 -509642 7.452 -34.512 -27.060 -27.053
 

6-311+G

HF 0.00103 -509610 7.686 -35.140 -27.454 -27.452
B3LYP 0.00092 -511112 7.434 -34.073 -26.396 -26.368
MP2 0.00295 -509649 7.463 -34.512 -27.049 -27.046
 

6-311++Gβˆ—βˆ—

HF 0.00061 -509613 7.361 -34.512 -27.151 -27.150
B3LYP 0.00077 -511109 7.381 -31.375 -23.994 -23.993
MP2 UTO UTO UTO UTO UTO UTO

Table 10: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of linear structure of sodium hydride hexamer at HF, DFT(B3LYP) and MP2 levels of theory using basis sets 6-31+G, 6-31G*, 6-311+G and 6-311++G** has shown below.

UTO denote the unable to optimize.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00143 -611474 7.667 -32.002 -24.335 -24.333
B3LYP 0.00084 -613268 7.439 -30.120 -22.681 -22.680
MP2 0.00209 -611518 7.275 -31.375 -24.100 -24.087
 

6-31Gβˆ—

HF 0.00140 -611476 7.051 -32.002 -24.951 -24.949
B3LYP 0.00089 -613270 6.876 -28.865 -21.989 -21.988
MP2 0.00265 -611530 6.192 -28.865 -22.673 -22.670
 

6-311+G

HF 0.00065 -611494 7.797 -32.002 -24.205 -24.202
B3LYP 0.00070 -613296 7.374 -32.065 -24.691 -24.690
MP2 0.00125 -611540 7.119 -30.120 -23.001 -22.999
 

6-311++Gβˆ—βˆ—

HF 0.00052 -611497 7.998 -31.375 -23.377 -23.376
B3LYP 0.00081 -613299 9.027 -29.492 -20.465 -20.464
MP2 UTO UTO UTO UTO UTO UTO

Linear structure of sodium hydride hexamer with bond critical point at DFT(B3LYP) level of approximation using basis set 6-311++G**.

Figure 05: Linear structure of sodium hydride hexamer with bond critical point at DFT(B3LYP) level of approximation using basis set 6-311++G**.

Optimized cyclic structure of sodium hydride hexamer at DFT(B3LYP) level of theory using basis set 6-311++G**.

Figure 06: Optimized cyclic structure of sodium hydride hexamer at DFT(B3LYP) level of theory using basis set 6-311++G**.

Table 11: Interaction energy EI, ground state energy Emin, corrected zero point energy EZP , basis set superposition error Eb, interaction energy with corrected zero point energy EI+ZP , corrected interaction energy Ξ”E of cyclic structure of sodium hydride hexamer at HF, DFT(B3LYP) and MP2 levels of theory using basis sets 6-31+G, 6-31G*, 6-311+G and 6-311++G** has shown below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00294 -611516 9.068 -34.512 -25.444 -25.441
B3LYP 0.00193 -613310 9.049 -32.002 -22.953 -22.951
MP2 0.00208 -611518 7.235 -35.361 -28.126 -28.123
 

6-31Gβˆ—

HF 0.00301 -611519 8.695 -34.512 -25.817 -28.123
B3LYP 0.00194 -613313 8.663 -28.785 -20.122 -20.120
MP2 0.00640 -611575 8.822 -34.512 -25.690 -25.683
 

6-311+G

HF 0.00105 -611536 9.202 -34.512 -25.310 -25.308
B3LYP 0.00100 -613338 8.191 -32.316 -23.397 -23.396
MP2 0.00281 -611582 8.841 -32.630 -23.789 -23.786
 

6-311++Gβˆ—βˆ—

HF 0.00062 -611540 8.714 -33.885 -25.171 -25.170
B3LYP 0.00084 -613341 8.754 -31.375 -22.621 -22.620
MP2 UTO UTO UTO UTO UTO UTO

Table 12: Interaction energy EI, ground state energy Emin, corrected zero-point energy EZP, basis set superposition error Eb, interaction energy with corrected zero-point energy EI+ZP, corrected interaction energy Ξ”E of cubic like structure of sodium hydride hexamer at HF, DFT(B3LYP) and MP2 levels of theory using basis sets 6- 31+G, 6-31G*, 6-311+G and 6-311++G** has tabulated below.

Basis Sets Level of

Theory

Eb

(kcal molβˆ’1 )

Emin

(kcal molβˆ’1 )

EZP

(kcal molβˆ’1 )

EI

(kcal molβˆ’1 )

EI+ZP

(kcal molβˆ’1 )

Ξ”E

(kcal molβˆ’1 )

 

6-31+G

HF 0.00308 -611522 11.206 -40.787 -29.581 -29.577
B3LYP 0.00341 -613319 11.155 -40.160 -29.005 -29.001
MP2 0.00774 -611570 11.472 -43.925 -32.453 -32.445
 

6-31Gβˆ—

HF 0.00284 -611528 10.791 -43.297 -32.506 -32.503
B3LYP 0.00314 -613322 10.828 -43.297 -32.469 -32.465
MP2 0.00937 -611589 11.382 -48.945 -37.563 -37.553
 

6-311+G

HF 0.00191 -611542 10.937 -40.787 -29.850 -29.848
B3LYP 0.00243 -613347 10.819 -33.194 -22.375 -22.372
MP2 0.00657 -611593 11.088 -43.297 -32.209 -32.202
 

6-311++Gβˆ—βˆ—

HF 0.00138 -611550 10.862 -43.925 -33.063 -33.061
B3LYP 0.00227 -613352 10.980 -42.670 -31.690 -31.687
MP2 UTO UTO UTO UTO UTO UTO
  1. CONCLUSION

All the calculations obtained from the entire work are based on first principles method. We have used three different theories: HF, DFT(B3LYP) and MP2 levels. We have obtained better results in DFT(B3LYP) and MP2 levels than HF level. We have performed the first principles calculation to study the ground state energy, corrected zero-point energy, interaction energy, interaction energy with corrected zero-point energy, corrected interaction energy, BSSE, maximum and minimum frequency of (Na H) n clusters (n=1-6) and we have studied electron density of bond critical point (ρ bcp) and Laplacians(βˆ‡2ρ) of (Na H) n clusters (n=1-6) using AIM calculations. We have selected 6-31+G, 6-31G*, 6-311+G and 6-311++G** basis sets and performed whole work using G03W and AIMALL software. Linear and cyclic structures were found in all (Na H) n clusters (n=1-6) but cubic structures were found only in sodium hydride tetramer and sodium hydride hexamer clusters. Β In sodium hydride dimer, we have calculated ground state energy, zero-point vibrational energy and corrected interaction energy whose values are -204409 kcal molβˆ’1, 4.924 kcal molβˆ’1 and -19.131 kcal molβˆ’1 respectively for linear structure and -204424 kcal molβˆ’1, 5.689 kcal molβˆ’1 and -32.800 kcal molβˆ’1 respectively for cyclic structure at DFT(B3LYP) level of theory using 6-311++G** basis set. In sodium hydride trimer, we have determined the ground state energy, zero-point vibrational energy and corrected interaction energy with values are -306629 kcal molβˆ’1, 8.462 kcal molβˆ’1 and -22.289 kcal molβˆ’1 respectively for linear structure and -306659 kcal molβˆ’1,9.405 kcal molβˆ’1 and -35.779 kcal molβˆ’1 respectively for cyclic structure at DFT(B3LYP) level of theory using 6-311++G** basis set. In sodium hydride tetramer, the calculated values of the ground state energy, zero point vibrational energy and corrected interaction energy are -408851 kcal molβˆ’1, 12.034 kcal molβˆ’1 and -22.274 kcal molβˆ’1 respectively for linear structure, -408888 kcal molβˆ’1, 12.727 kcal molβˆ’1 and -27.857 kcal molβˆ’1 respectively for cyclic structure and -408889 kcal molβˆ’1, 13.711 kcal molβˆ’1 and -28.127 kcal molβˆ’1 respectively for cube structure at DFT(B3LYP) level of theory using 6-311++G** basis set. Similarly, two structures of sodium hydride pentamer have been studied. The calculated ground state energy, zero-point vibrational energy and corrected interaction energy values are -509593 kcal molβˆ’1, 15.595 kcal molβˆ’1 and -21.644 kcal molβˆ’1 respectively for linear structure and -511109 kcal molβˆ’1, 15.756 kcal molβˆ’1 and -23.993 kcal molβˆ’1 for cyclic structure at DFT(B3LYP) level of theory using 6-311++G** basis set. In addition, three structures of sodium hydride hexamer have been studied. we have determined the ground state energy, zero point vibrational energy and corrected interaction energy values are -613299 kcal molβˆ’1, 19.077 kcal molβˆ’1 and -20.464 kcal molβˆ’1 respectively for linear structure, -613341 kcal molβˆ’1, 18.804 kcal molβˆ’1 and -22.620 kcal molβˆ’1 respectively for cyclic structure and -613352 kcal molβˆ’1, 21.030 kcal molβˆ’1 and -31.687 kcal molβˆ’1 respectively for cube like structure at DFT(B3LYP) level of theory using 6- 311++G** basis set. We have also calculated the maximum and minimum frequency of all kind of clusters (Na H) n, (n=1-6). In the entire work we have also calculated the electron density at bond critical point (ρ bcp) and Laplacians (βˆ‡2ρ) of all structures of sodium hydride clusters (Na H) n, (n=1-6). Finally, we have studied, calculated and discussed about the all structures of sodium hydride clusters in the entire present work.

References

  1. Lewars, Introduction to Theory and Application of Molecular and Quantum Mech- nics, New York, (2004).
  2. K. Puri and V. K. Babbar, Solid State Physics, S. Chand and Company Ltd., New Delhi, Third Edition, (2008).
  3. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese- man, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S.
  4. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
  5. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox,
  6. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,
  7. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
  8. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Chal- lacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision E.01, Wallingford CT, (2004).
  9. A. Keith, AIMALL (Version 11.12.19) Gristmill Software, Overland Park KS, USA, 2011.
  10. Parajuli and E. Arunan, Chem. Phys. Lett. 568-569, 63 (2013).
  11. R. Upadhyaya, Structure and Electronic Properties of (LiH)n Clusters (n=1-7), M.Sc. (Physics) Dissertation, Amrit Campus, Tribhuvan University, Nepal (2013).
  12. Sapkota, Computational Study of Hydrogen Bonding in CH3CNβ€’ β€’ β€’(HX)n[X=F, Cl, NH2, n=1, 2] Complexes, M.Sc. (Physics) Dissertation, Amrit Campus, Tribhuvan University, Nepal (2015).
  13. F. Matta and R. J. Boyd, The Quantum Theory of Atoms in Molecules, Wiley-VCH, Weinheim, (2007).

Β 

Publication History

Submitted: April 27, 2024
Accepted:Β  Β May 22, 2024
Published:Β  February 28, 2025

Identification

D-0347

DOI

https://doi.org/10.71017/djnsi.4.2.d-0347

Citation

Kamal Giri (2025). First Principles Study of Stability of Sodium Hydride (Nah)N Clusters, (N=1-6). Dinkum Journal of Natural & Scientific Innovations, 4(02):92-103.

Copyright

Β© 2025 The Author(s).